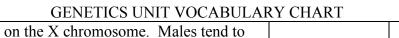
Word	Definition	Word Part	Visual/Mnemonic Related Words
1. adenine	Nitrogen base, pairs with thymine in DNA and uracil in RNA		Thymine H Adenine H ₃ C O H -N N Sugar N -HN N Sugar Hydrogen bonds
2. allele	One or more alternate forms of a gene Example: P = Dominant (purple); p = recessive (white)		Allele for purple flowers Locus for flower-color gene Locus for flower-color chromosomes Allele for white flowers
3. amino acid	The subunit of a protein, carried in by the tRNA from the cytoplasm to the ribosome during protein synthesis		110 110 110 110 110 110 110 110
4. anticodon	Three bases on a tRNA molecule that match up with the codons	<i>Anti</i> = against, opposite <i>Code</i> = converting a piece of information from one form to another	Fig. 2: Charged Transfer RNA (tRNA) amino acid binding site 3 1 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5

5. chromosome	Compact structure of tightly coiled DNA within the nucleus containing the genetic information that is passed from one generation of cells to the next. Humans have 46 chromosomes; 23 pairs	<i>khrōma</i> = color <i>sōma</i> = body (because chromosomes readily take up dye)	Chromosome Colicid DNA
6. clone	Genetically identical organism: a plant, animal, or other organism that is genetically identical to its parent	<i>Klon</i> = a twig	
7. cloning	The creation of an organism that is an exact genetic copy of another		
8. codominant	Describes genes that each have equal effect in making the character they control appear in offspring. The genes for A and B blood groups are codominant and give rise to the AB blood group if	<i>Co</i> = with, together <i>dominari</i> = be	Blood Type Genotype Can Receive Blood From: A i i i i AA i i AA AO AA Or O
	they are both inherited	lord, rule	$ \begin{array}{c cccc} B & i^{B}i & BB \\ i^{B}B & BO \\ \end{array} & B & O \\ \begin{array}{c} B & AB \\ AB & i^{A}i^{B} & AB \\ \end{array} & AB & AB, O \\ \end{array} $
			O <i>ii</i> ∞ O

	GENETICS UNIT VOCABULA		
9. codon	A unit in messenger RNA consisting of a set of three consecutive nucleotides that specifies a particular amino acid in protein synthesis	<i>Code</i> = converting a piece of information from one form to another	Valing C U G A
10. crossbreeding	To breed new strains of plants or animals from genetically different individuals. To create a hybrid	<i>kross</i> = both <i>brod</i> = fetus, hatching	
11. crossing over	The exchange of genetic material between homologous chromosomes that occurs during meiosis and contributes to genetic variation	<i>kross</i> = both <i>ofer</i> = above, beyond	Crossing-over and recombination during melosis

12. cytosine	Nitrogen base, pairs with guanine, in both DNA and RNA		Guanine H Cytosine
13. diploid	Term used to refer to a cell that contains both sets of homologous chromosomes	di = two	
14. DNA Deoxyribose Nucleic Acid	A nucleic acid molecule in the form double helix that is the major component of chromosomes and carries genetic information	de = away from, down oxy = oxygen ribose = a sugar nucleic acid = chain of nucleotides	
15. dominant	A trait that will appear in the offspring if one of the parents contributes it	<i>dominari</i> = be lord, rule	

16. fertilization	GENETICS UNIT VOCABULA Process in sexual reproduction in which the male and	<i>fertilis</i> =fruitful	an egg not big like a chicken egg,
	female gametes join to form a zygote	<i>-ion</i> = act or condition of	a sperm looks like a tadpole, very, very small a zygote the first cell of a new person a baby is much bigger than a cell!
17. gamete	Sex cells: Female – egg, male – sperm MEiosis makes haploid gametes that have ½ the number of chromosomes	<i>gamos</i> = marriage	
18. gel electrophoresis	A process in which fragments of DNA are sorted by size. Used to determine relatedness among organisms	<i>geleta</i> = jelly <i>electro</i> = electricity <i>phorēsis</i> = being carried	Samples A B C D E F Band #
19. gene	Sequence of DNA that codes for a protein and thus determines a trait	genos = offspring, birth genesis = orign	DNA molecule Gene 2 DNA strand DNA strand TRANSCRIPTION mR/NA TRANSCRIPTION Protein Transcription Protein Transcription Amino acid


20. genetic engineering	Process of making changes in the DNA code of living organisms. Examples: cloning, genetic recombination, gene splicing	<i>genesis</i> – origin <i>ingenium</i> - talent, clever device	inserting the gene for yellow skin colour, from capsicum).
21. genotype	Genetic make up of an organism Example: DD – homozygous dominant genotype; Dd – heterozygous genotype; dd – homozygous recessive genotype	<i>genesis</i> = origin <i>type</i> = kind	Phenotype= Blue Eyes Phenotype=Brown Eyes Image: Stress intermediate intermedintermedintere intermediate intermediate intermedinterme
22. guanine	Nitrogen base, pairs with cytosine, in both DNA and RNA		Guanine H Cytosine
23. haploid	Refers to a cell that has only a single set of chromosomes and therefore only a single set of genes. Gametes are haploid	<i>haplous</i> = single	Daughter Nuclei Interphase Homologous Chromosomes

24. heterozygous	Refers to an organism that has two different alleles	hetero =	
	for the same trait.	different	
	Example: Aa	<i>zygo</i> = to yoke/bring together	
25. homozygous	Refers to an organism that has two identical alleles for a particular trait. Example: AA or aa	<i>homo</i> = same <i>zygo</i> = to yoke/bring together	Ť Ť
26. hybrid	The offspring produced by crossing two individuals with different traits	<i>Hybrida</i> = offspring of mixed parentage	
27. karyotype	Photograph of chromosomes grouped in order in pairs. Tool used to identify the general appearance, including size, number, and shape of the set of chromosomes	<i>Karyo</i> = refers to the nucleus of a cell <i>type</i> = kind	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

	ULINETICS UNIT VOCADULA		
28. meiosis	Process by which the number of chromosomes per cell is cut in half to make haploid gametes	<i>meioun</i> = to make smaller - <i>osis</i> = condition	Constructions Constr
29. monohybrid cross	A method of tracking the inheritance pattern of a single trait between two individual organisms	<i>mono</i> = one <i>hybrida</i> = offspring of mixed parentage	B b B b pistil P b Bb bb
30. mutation	Change in a DNA sequence that affects genetic information. Leads to genetic variation.	<i>mutare</i> = to change - <i>ion</i> = act or condition of	
31. nucleotide	Monomer of a nucleic acid. Composed of a sugar, a phosphate and a base (ACTG)	<i>nucleo</i> = having to do with the nucleus	Phosphate Nitrogenous Base Pentose Sugar

r	UENETICS UNIT VOCADULA		
32. phenotype	Physical characteristics of an organism	<i>pheno</i> = to appear <i>type</i> = kind	Phenotype= Blue Eyes Phenotype=Brown Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes Image: Phenotype = Blue Eyes <t< th=""></t<>
33. polypeptide	Another name for a protein. A substance containing two or more amino acids in the molecule joined together by peptide bonds	Poly = many	Peptide bond Peptide bond Pe
34. Punnett square	Diagram showing the possible gene combinations of a genetic cross		A a A AA Aa a Aa aa
35. ratio	Proportional relationship of two numbers or things being measured	<i>ration</i> = relation, reason	B b B b B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B <t< td=""></t<>

36. recombinant	Molecule formed when fragments of DNA from two	re = back, again	
DNA	or more different organisms are spliced together.	<i>combinare</i> = to bring together	
37. recessive	Describes an allele that is not expressed in heterozygous individuals. Must have two recessive alleles in order for the gene to be expressed	re = back cess = go, yield, move	Figure 1: Inhoritance Patterns of the Widow's Peak Trait $W = dominant widow's Peak Trait we = recessive straight hairline allele Results of Allele Combinations: WWW = Widow's Peak Trait WWW = Widow's Peak Trait WWW = Straight Hairline Trait$
38. RNA – Ribonucleic Acid	A nucleic acid composed of a long, usually <u>single</u> - stranded chain of nucleotide units that contain the sugar <u>ribose</u> and the base <u>uracil</u> mRNA – messenger RNA tRNA – transfer RNA rRNA – ribosomal RNA		Tansport to cyclosteem for Tansport to cyclosteem for Cell membrane

39. sex-linked gene	Gene located on the X chromosome. Males tend to inherit sex-linked traits, such as color blindness, more often than females because they only have one X chromosome		Alco Constant Alco Constant Bene Henry Fred Alco Nicolas II Wakkarar Prince Henry Oga Tatlana Marie Anastasia Alcole Frusia Normal Male Momal Famale Hencphilio Male Carrier Franale Carrier Franale Male dist in fritonoy. possible tempohilic
40. somatic cell	Any of the cells of an organism that become differentiated into the tissues, organs, etc. of the body. Do not include the sex cells (gametes)	<i>somo</i> = body	
41. thymine	Nitrogen base, pairs with adenine, in DNA only		Thymine H Adenine H ₃ C O H -N N Sugar N - HN N Sugar Hydrogen bonds
42. transcription	Process in which a portion of DNA (a gene) is copied into complementary RNA (mRNA)	<i>trans</i> = across <i>transcript</i> = written copy	line

43. translation	Decoding of mRNA into a polypeptide chain. Occurs at the ribosome	<i>trans</i> = across <i>translation</i> = from one language into another	Español English
44. uracil	Nitrogen base, pairs with adenine, in RNA only		adenosine uracil