

Copyright Pearson Prentice Hall

Slide 1 of 39

9-1 Chemical Pathways

Copyright Pearson Prentice Hall

Slide 2 of 39

9-1 Chemical Pathways

click to start

Food serves as a source of raw materials for the cells in the body and as a source of energy.

Both plant and animal cells carry out the final stages of <u>cellular respiration</u> in the mitochondria.

Animal Cells

PEARSON

Chemical Energy and Food

One gram of the sugar glucose ($C_6H_{12}O_6$), when burned in the presence of oxygen, releases 3811 calories of heat energy.

A **calorie** is the amount of energy needed to raise the temperature of 1 gram of water 1 degree Celsius.

> Slide 5 of 39

9-1 Chemical Pathways I Overview of Cellular Respiration

Slide 6 of 39

9-1 Chemical Pathways i Overview of Cellular Respiration

Slide 8 of 39

The equation for cellular respiration is: $6O_2 + C_6H_{12}O_6 \rightarrow 6CO_2 + 6H_2O + Energy$ oxygen + glucose \rightarrow carbon dioxide + water + Energy

Slide 9 of 39

Glycolysis takes place in the cytoplasm. The Krebs cycle and electron transport take place in the mitochondria.

Copyright Pearson Prentice Hall

What happens during the process of glycolysis?

Copyright Pearson Prentice Hall

End Show

Slide 11 of 39

ATP Production

At the beginning of glycolysis, the cell uses up 2 molecules of ATP to start the reaction.

When glycolysis is complete, 4 ATP molecules have been produced.

This gives the cell a net gain of 2 ATP molecules.

NADH Production

One reaction of glycolysis removes 4 high-energy electrons, passing them to an electron carrier called **NAD⁺**.

Each NAD⁺ accepts a pair of high-energy electrons and becomes an NADH molecule.

The NADH molecule holds the electrons until they can be transferred to other molecules.

The Advantages of Glycolysis

The process of glycolysis is so fast that cells can produce thousands of ATP molecules in a few milliseconds.

Glycolysis does not require oxygen.

Copyright Pearson Prentice Hall

Slide

Fermentation

When oxygen is <u>not present</u>, glycolysis is followed by a different pathway. The combined process of this pathway and glycolysis is called fermentation.

Fermentation releases energy from food molecules by producing ATP in the absence of oxygen.

Slide 19 of 39

During fermentation, cells convert NADH to NAD⁺ by passing high-energy electrons back to pyruvic acid.

This action converts NADH back into NAD⁺, and allows glycolysis to continue producing a steady supply of ATP.

Fermentation does not require oxygen—it is an **anaerobic** process.

Slide 20 of 39

9-1 Chemical Pathways **Sermentation**

Copyright Pearson Prentice Hall

Slide 21 of 39

Alcoholic Fermentation

Yeasts and a few other microorganisms use alcoholic fermentation, forming ethyl alcohol and carbon dioxide as wastes.

The equation for alcoholic fermentation after glycolysis is:

pyruvic acid + NADH \rightarrow alcohol + CO₂ + NAD⁺

Slide 22 of 39

Lactic Acid Fermentation

In many cells, pyruvic acid that accumulates as a result of glycolysis can be converted to lactic acid.

This type of fermentation is called **lactic acid fermentation**. It regenerates NAD⁺ so that glycolysis can continue.

The equation for lactic acid fermentation after glycolysis is:

pyruvic acid + NADH \rightarrow lactic acid + NAD⁺

Slide 23 of 39

9-1 Chemical Pathways **Permentation**

The first part of the equation is glycolysis.

Copyright Pearson Prentice Hall

24 of 39

End Show

Slide

9-1 Chemical Pathways **Permentation**

The second part shows the conversion of pyruvic acid to lactic acid.

Copyright Pearson Prentice Hall

Slide 26 of 39

- 1 The raw materials required for cellular respiration are
 - a. carbon dioxide and oxygen.
 - b. glucose and water.
 - c. glucose and oxygen.
 - d. carbon dioxide and water.

Slide 27 of 39

2 Glycolysis occurs in the

- a. mitochondria.
- b. cytoplasm.
- c. nucleus.
- d. chloroplasts.

Slide 28 of 39

The net gain of ATP molecules after glycolysis is

- a. 3 ATP molecules.
- b. 2 ATP molecules.
- c. 3 pyruvic acid molecules.
- d. 4 pyruvic acid molecules

Slide 29 of 39

- 4 Fermentation releases energy from food molecules in the absence of
 - a. oxygen.
 - b. glucose.
 - c. NADH.
 - d. alcohol.

Slide 30 of 39

5

The first step in fermentation is always

- a. lactic acid production.
- b. the Krebs cycle.
- c. glycolysis.
- d. alcohol production.

Slide 31 of 39

END OF SECTION